If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+2y-88=0
a = 5; b = 2; c = -88;
Δ = b2-4ac
Δ = 22-4·5·(-88)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-42}{2*5}=\frac{-44}{10} =-4+2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+42}{2*5}=\frac{40}{10} =4 $
| 1/2(12+4x)=2(x-7) | | (3(x+9))+129=180 | | -12x+2=76 | | 2p=300-100+10 | | g+2.3=-13.6 | | 2p=300-100+2 | | -5-8n=91 | | 3x-2(10-4x)=4(3x-5)-x | | 64w2=36 | | -6k-3k=3+3k+2k-3 | | -10x-15=45 | | 2p=300-200+2 | | 17x+4=19x | | f/4+ 14=16 | | (7-c)+(3c+2)=- | | -6+(x|4)=-5 | | -2(3-10n)=3(2n-6) | | X+x=180-x+30 | | 2.77x+64=7.6729+8x | | 1.6=-5x+2.9 | | -8(1+5p)+3(1-p)=-48 | | z/6−-9=13 | | h/3+-5=-7 | | 3x(-12x+3)=x÷3 | | 9(b-4)-7b=2b+1 | | m/4+15=19 | | m4+ 15=19 | | 4.8+x=52.8 | | 2g−4=10 | | 16/21x+3/7=5 | | 3t+5-5t=25 | | a4=20 |